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GENERALIZED EVANS FUNCTION FOR CONTINUOUS SPECTRUM

Pewaemcs 3a0aua onpedesenus pymxyuu EH (A) maxott, umo ecau { A, }

— mouku HenpepsiBrozo cnekmpa onepamopa H u A # A, mo EH (A) on-

n’

pedesena u He pabua Hy1o.

The task is to define a function EH(A), such that if { A, } are the points of
the continuous spectrum of operator H and A # A, , then EH()) is defined and

n’

is non-zero.
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Introduction

This article is dedicated to the task of defining a function £, (1), associ-

ated with a differential operator H, that is sensitive to the spectrum of this op-
erator. If we restrict our attention to the discrete spectrum o, (H) and require
that equality £, (1) = 0 should only de satisfied for 1€ and require that
equality £, (1) =0 o, (H), we arrive to a familiar object, called the Evans
function. Originally introduced by J.W. Evans [1] in attempt to analyze the
stability of nerve pulses in the Fitzhugh — Nagumo system, it has since be-
came pretty much a staple tool in mathematical physics (cf., [2—10]). How-
ever, it's usefulness proves to be severely limited when one takes the continu-
ous spectrum (o, ) into the picture; it is not uncommon to end up with the

cont

Evans function being exactly equal to zero if some special properties of con-
tinuous spectrum are not satisfied. In many parts this difficulty stems from the
way the Evans function is commonly defined as a Wronskian of two solutions
possessing the specific asymptotes at +oo and -co respectively.

The purpose of this article therefore lies in the attempt to make a step in
a different direction and take a look at different possibilities for the Evans
function that would not heavily depend on the position of continuous spec-
trum, but would instead provide us with information about o, itself.

cont
Namely, we are trying to define such an object that if {4, } are the points of
the continuous spectrum of operator H and A # 4, , then E, (4) is defined

and is non-zero. The requirement for this object to be equal to zero for the
points belonging to the point spectrum remains similar to the requirements
for the standard Evans function.
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Main definitions

Let Hy,=A4,y,, and let {4, } denote the set of all discrete and continu-

ous spectra points. Let A be an arbitrary real parameter and define the op-
erator: A = H —A. Obviously, Ay, = (4,—1) v, , i.e. the eigenvalues of opera-

tor A have the form a, = 4, - A. If the spectrum of A is the discrete one,

detA=det(H —-1)=]]a, =10, -D).

Note, that Evans function is usually defined on the class of rapidly decreas-
ing potentials with the aid of a certain integral representation. If, however,
we turn our attention to the class of reflectionless potentials, it is possible to
show via Darboux transformations (cf. [2] for example), that the Evans func-
tion is a legible candidate for the factorization presented above. The rigorous
proof of this important fact will be a subject of a separate article..

Now let us introduce ¢ ,(s) = Z a,” . Using the definition of I-function we

can write (Among other applications, this representation proves to be extremely
handy in calculating required by the one-loop quantum correction. [3]):

1 T s—1 —a,t
gA(s)—m!;dtt ;e , (1)

when A <A ,and

n’

= dr ol forA> A, .
¢, (s)= F()J Ze or

Next, introduce the Green functions:
G (5x,0)= D e W (MY, () A<,

G, (tx0)=D ™ P (MY, (x); A>4,.

These functions satisfy the equations

0G| 4G =0, —AG, =0, )
o
with initial conditions
(D)
Gx(0;x, y)=0 (x—y). 3)
On a final remark, note that
Ye ' =[dPx G (t;x,x), Y e =[d°x G, (t;x,x). (4)

And, therefore

F(S)jdt z“jdﬂx G (t;x,x), A<A,,
gA(S)_

( 1) jdz t‘ldix G, (t;x,x), >4,
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Continuous spectrum (a free particle case)
2
Let H=-A=- with x4 =1,..., D. Then (2) transforms into
Ox“ox"
0G
a—t_—(AD‘l'/l)(i =0. (5)

The Fourier integral of G_ has the form
d’k
27"

where nu=xu—yu. Solution of (5), satisfying (3) is

¢ g (p),

G_(t;x,) =j

eik/,77ﬂ+(l—kf,)t

dPk
G_(tx )= [ ,
(27)
or, in other words,
At

e — /(41)
G (tx,y)=——5e """, 6
*( y) 2D (n_t)D/Z ( )

Alternatively, one can deduce

D, s
6. 51,31 [ A2 gt
(27)
However, this integral diverges, thus the function G, (¢;x,y) doesn’t exist.
Upon substitution of (6) into (1) and (4) we get

D t s=1-p/2 it
§)y=—-+2—— | dt t©%e", 7
gi( ) 2D D/ZF(S).([ ( )

where V), = Id Py =+ — is a total volume of the configuration space. In or-

der to incorporate this quantity into our considerations and receive a mean-
ingful answer we will invoke a usual trick: assume it to be of finite value
now and will take a limit 7, - o« at the very end.

Let us assume that 4 <0, i.e. that A =—u. Then

_ Vb I'(s—DJ2)
gi(s) - 2D7Z'D/2,L12S_D F(S) :

Now it is natural to introduce a function that will serve as a density of
¢,(s) and as such, will not depend on the configurational volume V7, :

ds,(s) _ 1 I'(s—D/2)

(D) _
S )= =
54 (s) dv,, 2DﬁD/2ﬂzs—D I(s)

Finally, rewrite the determinant of H — 1 as:

det(H - 1) = (e*% ‘ ”)TD :

and one can introduce what we’ll call the «geometric» Evans function
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— 7 52(0)
ep(A)=e .
Function &, is connected to «canonic» Evans function via

Ep(2)=ep(2)".

Before we move further on let us show a couple of examples of the «geomet-
ric» Evans function:

81(1) — e”,sz(ﬂ,) — e—yz(ln,uz —1)/(47!)]83(1) — e—;ﬁ /(671')’84(/1) — ey2(21i1y2—3)/(647r2))
£5(A)= e”j /(6()7[2)’ g,( )= e—;ﬁ(é Inu? 41)/(23()4;;3), (1) = e"'/ /(840;r3)
(we remind here, that 4 =— y2 ).

It is also rather helpful to keep in mind that

d p), ,_ Inp’=¥(s—D/2)+¥(s) I'(s-D/2)
S (S)_ 2D”D/2(#2)9—D/2 F(S) .

ds

The geometric Evans function (1) is defined for A <0 and A< 4,,.

Note, that the case 4> 4, doesn’t allow for a Green function (i.e. G,
doesn’t exist). The case A4 =4, cannot be analyzed since in this case the cor-
responding equation turns into an identity. Finally, when A=0, s > 05 —
0, the equation (7) diverges at the lower limit, hence {-function doesn’t exist
either.

In conclusion: ¢,(4) is defined and non-zero only for: A1<0,4>4,,

and, therefore, the continuous spectrum exist at 4, >0. To put it in other
terms, &,(A) is defined and finite only when 4, € continuous spectrum
(i.e., 4, >0)and when A =4, forany 4, (i.e. for 1 <0).

Thus, ¢,(4) satisfies all the conditions specified in the statement of the
problem.
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OVHAMMUKA JIOKAJIM3SOBAHHOTI'O VIMIIYJIBCA,
OIIMCBIBAEMOI'O YPABHEHUEM /1B — CTIOAPTCOHA 11

Wsyuen xaacc mounvix AokaiusoBannvix pewsenut ypabrenusn Ipbu —
Cmioapmcona Il muna; noxasamo, 4mo c meuenuem Gpemeny maxue pereHus
MepsIoN  NPOCMPAHCINBEHHYIO AOKAAUSAYUIO C XAPAKIMEPHbIM  BpeMeHHbIM
macuimabom, coBnadaouuM ¢ XapakmepHuiM NpoCHIpancmbeHHbiM MACUima-
bom HauasvHotl aokasusayuu. Ilomepa aoxarusayuu Buipaxaemcs 6 nosbie-
HUU Pe3OHAHCHBIX NUKOB, HUCAO KOMOPbIX ONpedessiemcs Xapaxmepom nobede-
HUA ONOPHOU hyHKYUU HA DeckoHeurocmu. B uacmuocmu, 5KCHOHEHYUANLHO
A0KAAU308aHHbIe B03MYUEHUS PACNAOAIOTNCA HA BECKOHEUHOE HUCAO PE3OHAHCOB.

A class of spatially localized solutions of Davey — Stewartson II equa-
tion is examined; it is shown that such solutions tend to lose the locality prop-
erties with time scale corresponding to a characteristic space scale of initial lo-
calization. The locality loss manifests itself with emergence of resonance
spikes, whose total number is determined by the asymptotic behavior of sup-
port function on infinity. In particular, the exponentially localized perturba-
tions split into an infinite number of the resonances.

KiroueBsie cnoBa: ypasHeHme /1o — CrioapTcoHa, ITpeobpasosanue [Jap0y,
COJIMITOHBI, MHTErpUpyeMble CCTeMEI, TTaphl JIakca.

Key words: Davey — Stewartson equation, Darboux transform, solitons, inte-
grable systems, Lax pairs.
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